Bibliographic record
PyTorch: An Imperative Style, High-Performance Deep Learning Library
- Authors
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James T. Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala
- Publication year
- 2019
- OA status
- unknown
Print
Need access?
Ask circulation staff for physical copies or request digital delivery via Ask a Librarian.
Abstract
Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it provides an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several common benchmarks.
Copies & availability
Realtime status across circulation, reserve, and Filipiniana sections.
Self-checkout (no login required)
- Enter your student ID, system ID, or full name directly in the table.
- Provide your identifier so we can match your patron record.
- Choose Self-checkout to send the request; circulation staff are notified instantly.
| Barcode | Location | Material type | Status | Action |
|---|---|---|---|---|
| No holdings recorded. | ||||
Digital files
Preview digitized copies when embargo permits.
- No digital files uploaded yet.
Links & eResources
Access licensed or open resources connected to this record.
- publisher Proxyable