Skip to content
Libro Library Management System
On the average-case complexity of learning output distributions of quantum circuits cover
Bibliographic record

On the average-case complexity of learning output distributions of quantum circuits

Authors
Alexander Nietner, Marios Ioannou, Ryan Sweke, Richard Kueng, Jens Eisert, Marcel Hinsche, Jonas Haferkamp
Publication year
2025
OA status
gold
Print

Need access?

Ask circulation staff for physical copies or request digital delivery via Ask a Librarian.

Digital copy

Unavailable in your region (PD status unclear).

Abstract

In this work, we show that learning the output distributions of brickwork random quantum circuits is average-case hard in the statistical query model. This learning model is widely used as an abstract computational model for most generic learning algorithms. In particular, for brickwork random quantum circuits on $n$ qubits of depth $d$, we show three main results:
โ€“ At super logarithmic circuit depth $d=\omega(\log(n))$, any learning algorithm requires super polynomially many queries to achieve a constant probability of success over the randomly drawn instance.
โ€“ There exists a $d=O(n)$, such that any learning algorithm requires $\Omega(2^n)$ queries to achieve a $O(2^{-n})$ probability of success over the randomly drawn instance.
โ€“ At infinite circuit depth $d\to\infty$, any learning algorithm requires $2^{2^{\Omega(n)}}$ many queries to achieve a $2^{-2^{\Omega(n)}}$ probability of success over the randomly drawn instance.
As an auxiliary result of independent interest, we show that the output distribution of a brickwork random quantum circuit is constantly far from any fixed distribution in total variation distance with probability $1-O(2^{-n})$, which confirms a variant of a conjecture by Aaronson and Chen.

Copies & availability

Realtime status across circulation, reserve, and Filipiniana sections.

Self-checkout (no login required)

  • Enter your student ID, system ID, or full name directly in the table.
  • Provide your identifier so we can match your patron record.
  • Choose Self-checkout to send the request; circulation staff are notified instantly.
Barcode Location Material type Status Action
No holdings recorded.

Digital files

Preview digitized copies when embargo permits.

Links & eResources

Access licensed or open resources connected to this record.

  • oa Direct