Skip to content
Libro Library Management System
YOLOv4: Optimal Speed and Accuracy of Object Detection cover
Bibliographic record

YOLOv4: Optimal Speed and Accuracy of Object Detection

Authors
Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao
Publication year
2020
OA status
unknown
Print

Need access?

Ask circulation staff for physical copies or request digital delivery via Ask a Librarian.

Abstract

There are a huge number of features which are said to improve Convolutional Neural Network (CNN) accuracy. Practical testing of combinations of such features on large datasets, and theoretical justification of the result, is required. Some features operate on certain models exclusively and for certain problems exclusively, or only for small-scale datasets; while some features, such as batch-normalization and residual-connections, are applicable to the majority of models, tasks, and datasets. We assume that such universal features include Weighted-Residual-Connections (WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT) and Mish-activation. We use new features: WRC, CSP, CmBN, SAT, Mish activation, Mosaic data augmentation, CmBN, DropBlock regularization, and CIoU loss, and combine some of them to achieve state-of-the-art results: 43.5% AP (65.7% AP50) for the MS COCO dataset at a realtime speed of ~65 FPS on Tesla V100. Source code is at https://github.com/AlexeyAB/darknet

Copies & availability

Realtime status across circulation, reserve, and Filipiniana sections.

Self-checkout (no login required)

  • Enter your student ID, system ID, or full name directly in the table.
  • Provide your identifier so we can match your patron record.
  • Choose Self-checkout to send the request; circulation staff are notified instantly.
Barcode Location Material type Status Action
No holdings recorded.

Digital files

Preview digitized copies when embargo permits.

  • No digital files uploaded yet.

Links & eResources

Access licensed or open resources connected to this record.